A New Theory of Heterogeneous Ice Nucleation for Application in Cloud and Climate Models

Vitaly I. Khvorostyanov and Judith A. Curry

Abstract. A new formulation is presented of the thermodynamical theory of heterogeneous ice crystal nucleation in clouds by freezing. This theory unifies and explains the empirical ice nuclei dependence on temperature and supersaturation, predicts crystal formation via condensation-freezing at a subsaturation over water. The theory also explains observations of high nucleation rates and crystal concentrations at warm (−5 > −12 °C) temperatures when the splintering mechanism may be not effective. This theory can be applied to parameterizations for use in cloud and climate models.

1. Introduction

The heterogeneous nucleation of ice crystals on ice nuclei (IN) governs the phase transformation of clouds and precipitation formation, and thereby influences the life times and optical properties of clouds. Heterogeneous nucleation of ice has also been studied in the context of cloud seeding and weather modification efforts.

As summarized by Pruppacher and Klett [1997, hereafter PK97], two main functional relationships between IN and the heterogeneous nucleation of ice have been found: 1) temperature dependence [Fletcher, 1962], NI(T); and 2) dependence on ice saturation ratio SI or ice supersaturation, δi=SI−1. [Huffman, 1973; Meyers et al., 1992, hereafter MDC92]. MDC92 showed that Fletcher’s T-dependence underpredicts the ice needle concentration by 10⁴−10⁵ at −5°C < T < −25°C, but may overpredict NI by 10⁴−10⁶ at T < −40°C.

Dependence of IN concentration on supersaturation has been invoked to explain the phenomenon of “ice multiplication” in clouds [e.g., Rango and Hobbs, 1991, hereafter RH91] and could not be explained with Fletcher’s T-dependence or the Hallet-Mossop splintering mechanism. RH91 hypothesized that high water supersaturation δi>5−10% is required to explain the ice multiplication.

The above T- and δ-relations for IN concentration have been derived empirically. Fletcher [1962, 1969] formulated the classical theory of heterogeneous nucleation of an ice germ on the surface of an insoluble substrate for the freezing and deposition modes. Fukuta and Schaller [1982] extended Fletcher’s theory by assuming that condensation and freezing proceeds in two steps. In all of the classical formulations, the T- and δ-effects remain independent, and condensation freezing may occur only at water supersaturation.

In this paper, we examine heterogeneous ice nucleation via condensation-freezing (CF) and derive a general expression for the critical radius of an ice germ and free energy that depend simultaneously on both T and S. exp and allows CF at S < 1.

The rate of CF is compared also with the deposition mode of ice nucleation. This theory explains many observed features of heterogeneous nucleation, and creates a basis for more physically justifiable parameterizations of heterogeneous nucleation in cloud and climate models.

2. Critical Radius, Energy, Nucleation Rates

The classical theory of heterogeneous ice nucleation considers two main mechanisms of ice formation: 1) ice germ formation on the surface of the solid insoluble substrate (SIS) which is in contact with a supercooled liquid droplet (hereafter referred to as the “freezing” mode) that may occur in condensation-freezing, contact, and immersion modes; and 2) ice germ formation from the vapor on the surface of the insoluble curved substrate (hereafter referred to as the “deposition” mode). We consider models for both freezing and deposition nucleation, whereby [following Fletcher, 1962] a droplet and an ice germ are approximated by a spherical cap on the surface of a solid aerosol particle.

2.1 Freezing Mode

Mixed aerosol particles usually contain a partially soluble portion (cloud condensation nuclei, CCN) along with an insoluble portion. After deliquescent of the CCN at S<0, the SIS may initiate ice nucleation in the solution. The rate of germ formation in a supercooled droplet of water or solution per unit time per particle, J_{s,p} [s⁻¹], can be calculated following PK97:

\[J_{s,p}(T,r_N) = Z_N \Omega_{\Omega,s} \frac{kT}{h} 4\pi r_N^2 \exp \left[\frac{-\Delta F_{act}}{kT} \right] \left(\frac{\Delta F_{gs}}{kT} \right) \] (2.1)

where k and h are Boltzmann’s and Planck’s constants, Z_n is Zeldovich factor, \(N_{s} = 5.85 \times 10^{12} \) cm⁻² is the number of water molecules contacting unit area of ice germ, \(\Omega_{\Omega,s} \) is the ice cap surface area, \(\Delta F_{act} \) is the activation energy of water molecule transition from liquid to ice at the solution-ice interface, \(\Delta F_{gs} \) is the critical energy of germ formation, \(r_N \) the radius of an insoluble fraction of an aerosol particle (IN), and \(\epsilon_{s} = 10^{28} \) cm⁻² is the concentration of water molecules adsorbed on 1 cm² of a surface. Following PK97 (p.342), Z_N, \(\Omega_{\Omega,s} \). In the classical theory, the expression for \(\Delta F_{gs} \) is related to the critical radius \(r_{nf} \) of an ice germ [Fletcher, 1962; PK97].

The classical expressions for \(r_{nf} \) and \(\Delta F_{gs} \) do not account for solution effects in the droplet, the temperature dependence of the latent heat of fusion, and the supersaturation (humidity) dependence. The generalized expressions for \(r_{nf} \) and energy \(\Delta F_{gs} \) that account for both dependencies can be derived in a manner similar to Khvorostyanov and Sassen [1998, K98], using some methods from Khvorostyanov and Curry [1999], and incorporating here the effects of the insoluble substance. We start with the general thermodynamical condition of equilibrium for an aqueous solution droplet with radius \(r_{a} \) containing an ice germ of radius \(r_{nf} \) located on a curved insoluble...
substrate with radius \(r_0 \) [PK97, (6-52)], generalized to account for the elastic mismatch of the ice surface by the insoluble substrate following \(\text{Turnbull and Vonnegut} \ [1952] \):

\[
-\frac{L_m(T)}{T} \frac{dT}{d} + \frac{C \varepsilon^2}{\rho_i} - \frac{2}{\rho_w(T)} \frac{dT}{d} \frac{\sigma_{sa}(T)}{r_d} - \frac{2}{\rho_i(T)} \frac{dT}{d} \frac{\sigma_{si}(T)}{r_g} + \frac{RT}{M_w} d[\ln[a_w]] = 0 \tag{2.2}
\]

Here \(L_m \) is the latent heat of fusion, \(\rho_i \) and \(\rho_w \) the ice and water densities, \(\sigma_{sa} \) and \(\sigma_{si} \) are the surface tensions at the solution-air and solution-ice interfaces, \(M_w \) is the molecular weight of water, \(R \) is the universal gas constant, \(\varepsilon \) is the elastic strain produced in ice embryo by the insoluble substrate, and \(C \) is the constant estimated by \(\text{Turnbull and Vonnegut} \) as \(1.7 \times 10^3 \) dyn cm\(^{-2}\). The values of \(\varepsilon \) are discussed in section 3. The activity of water \(a_w \) in solution is defined by

\[
\ln[a_w] = -\frac{vL_i \varepsilon}{M_w \rho_w} \left[\frac{P_N}{P_N^0} \right] \left[\frac{r_d^3 - r_g^3}{r_g^3} \right] \tag{2.3}
\]

where \(\Phi_i \) is the osmotic coefficient, \(v \) is the number of ions in solution, \(\varepsilon \) and \(M_w \) are the mass fraction and the molecular weight of solutional material of a nucleus, and \(\rho_w \) is the density of the insoluble fraction.

Using a polynomial fit for \(L_m(T) \) [PK97], we can integrate (2.2) with the usual boundary conditions \(a_w = 1, r_g = \infty \), and \(\varepsilon = 0 \) at \(T = T_0 \), and obtain:

\[
\left[\frac{T_m(T)}{T} \right] \ln \frac{T}{T_0} + \frac{C \varepsilon^2}{\rho_i} = \frac{2}{\rho_w(T)} \frac{\sigma_{sa}}{r_d} + \frac{2}{\rho_i(T)} \frac{\sigma_{si}}{r_g} - \frac{RT}{M_w} \frac{2 \sigma_{sa}}{r_d} + \frac{\sigma_{si}}{r_g} - \Phi_i \varepsilon \frac{M_w P_N}{M_w \rho_w} \frac{r_d^3}{r_g^3} \tag{2.4}
\]

Here \(B_{sw} = (2 \sigma_{sa} M_w / \rho_w R T) \) is Kelvin’s curvature parameter for the air-solution interface, \(R \) the universal gas constant, and we introduce an “effectiveness” latent heat of fusion following KS98.

A droplet is much larger than an ice germ, \(r_d \gg r_g \), so we can neglect the first term in the first bracket on the RHS of (2.4). The expression (2.4) can be simplified using the Kohler equation, which relates the saturation ratio over water \(S_w \) to the curvature and solution [PK97, (6-33)]:

\[
\ln[S_w] = \frac{B_{sw}}{r_d} - \frac{\Phi_i \varepsilon}{M_w \rho_w \left(\frac{r_d^3}{r_g^3} \right)} \tag{2.5}
\]

Using (2.5), the ice germ radius can be found from (2.4):

\[
r_g = \frac{2 \sigma_{si}}{\Phi_i \varepsilon} \frac{M_w}{L_m(T)} \ln \frac{T}{T_0} \frac{S_w}{S_w^0} - C \varepsilon^2 \tag{2.6}
\]

where we have introduced a new dimensionless parameter

\[
G(T) = RT/\rho_i(T) L_m(T) \tag{2.7}
\]

The critical energy \(\Delta F_{gs} \) can then be expressed as

\[
\Delta F_{gs} = \frac{4 \pi}{3} \sigma_{si} r_g^2 f(m_{iv}, x) = \left[\frac{(16 \pi/3) \rho_i^3 \left(\frac{S_w}{S_w^0} \right)}{R T \ln[S_w]/C \varepsilon^2} \right]^2 \tag{2.8}
\]

where \(f(m_{iv}, x) \) is the shape factor caused by the geometry of the spherical cap and an aerosol particle with radius \(r_0 \), so that \(x = r_0/r_e \). The term \(m_{iv} = \cos \theta_0 = \left[(\sigma_{sv} - \sigma_{si}) / \sigma_{sv} \right] \) is the cosine of the contact angle or “wettability” parameter at the solution-ice interface and \(f(x, m_{iv}) \) is defined by [Fletcher, 1962]:

\[
f(m, x) = 1 + \left[\frac{(1 - mx)}{\phi} \right]^{1/3} + \frac{3}{2} \left(\frac{2}{\phi} \right)^{1/3} + \frac{3}{2} \left(\frac{2}{\phi} \right)^{1/3} (\psi - 1),
\]

\[
\psi = (x - m) / \phi, \quad \phi = (1 - 2mx + x^2)^{1/2} \tag{2.9}
\]

The expression for \(\Delta F_{gs} \) can be generalized following Fletcher [1969] to account for the “active sites” with the relative area \(\alpha_r \), so that an IN of radius \(r_0 \) contains the area \(\alpha_r a_r \ll 4 \pi r_d^2 \), with \(m_{iv} = 1 \), and the rest of the surface with \(m_{iv} < 1 \). Then \(\Delta F_{gs} \) is

\[
\Delta F_{gs} = \frac{4 \pi}{3} \sigma_{si} r_g^2 f(m_{iv}, x) - \sigma_N^0 (1 - m_{iv}) \tag{10.10}
\]

Eqs. (2.6)-(2.10) along with (2.1) for \(J_{sw} \) provide the solution to the problem of heterogeneous nucleation by freezing mode on the surface of a single aerosol particle (IN). For the condensation-freezing mode, the crystal concentration \(N_p \) and crystal nucleation rate \(dN_p / dt \) \((\text{cm}^{-3} \cdot \text{s}^{-1}) \) in a polydisperse aerosol with uniform size and surface properties can be calculated by integrating the probability of freezing \(P_r \) of an individual droplet over aerosol size spectrum \(f(r_d) \), normalized to the aerosol concentration \(N_p \):

\[
J_{sw}(t) = \int P_r(r_N, t) f(r_N) dr_N, \quad R_p = dN_p / dt, \quad \int t \quad P_r(r_N, t) = 1 - \exp \left[-\int J_{sw}(t) dt \right] \tag{2.11}
\]

For the immersion mode, the probability of freezing of an aerosol particle \(P_r(r_N) \) embedded in a drop with radius \(r_d \) should be averaged over \(f(r_d) \) (the activated aerosol embedded in drops), and integrated over the drop size spectrum \(f(r_d) \). The calculation for the contact mode is a little more complicated and can be based on the evaluation of the Brownian, diffusive and thermoelective fluxes of interstitial unactivated aerosol to a drop [e.g., Young, 1993].

The previous considerations show that the same aerosol particles may act both as IN and CCN under various conditions; thus \(N_p \) is of the order of \(N_{CCN} \). The classical formulation for condensation-freezing mode [PK97, (9-38)] allowed nucleation only for the case of water saturation. This new formulation (2.6)-(2.8) allows nucleation both for supersaturation in liquid clouds and at subsaturation over water, \(S_w < 1 \), but supersaturated over ice, \(S_i > 1 \).

2.2. Deposition Mode

The work of an ice germ formation from the vapor is [following Young, 1993, PK97]:

\[
\Delta F_{gs} = \frac{4 \pi}{3} \sigma_{si} r_g^2 f(m_{iv}, x) = \left[\frac{(16 \pi/3) \rho_i^3 \left(\frac{S_w}{S_w^0} \right)}{R T \ln[S_w]/C \varepsilon^2} \right]^2 \tag{2.12}
\]

where \(M_w \) is the wettability parameter at the ice-vapor interface. Then the nucleation rate \(J_{sw} \) can be written as [PK97]

\[
J_{sw}(r_N, T) = \frac{4 \pi r_N^2 Z_S e^{\left[\frac{1}{(2m_0 kT)^{1/2}} \right] c_{sw} \exp \left[-\Delta F_{gs} / kT \right]}} \tag{2.13}
\]

where \(e \) is the vapor pressure, \(m_0 \) the mass of water molecule, \(c_{sw} \) concentration of vapor molecules in the monolayer on the surface. The preexponential factor (kinetic coefficient) is about \(10^{20} r_d^2 \) cm\(^3\). [Fletcher, 1962]. The crystal nucleation rate
\[R_{dep} = dN_{dep}/dt \] for polydisperse aerosol is calculated by integrating over \(f(r) \) as in (2.11).

3. Discussion

Equation (2.6) for \(r_e \) contains two particular cases of classical nucleation theory. At \(S_w = 1 \), \(\varepsilon = 0 \), (2.6) transforms into J.J. Thompson's (1882, as cited by PK97) expression \(r_e = 2 \alpha \sigma_n / (\lambda \rho \ln(T/T_0)) \), for nucleation by freezing of water. In the second case \(T \rightarrow T_0 \) and \(\varepsilon = 0 \), (2.6) simplifies to Kelvin's (1870, see PK97) expression \(r_e = 2 \alpha \sigma_n / (RT_0 \ln(S_w)) \) for the nucleation of a crystal from the vapor. In general, (2.6)-(2.8) unify and generalize these two cases and provide a quantitative description of nucleation that accounts for the both temperature and supersaturation dependencies.

Eq. (2.8) for \(\Delta F_{\delta} \) differs from the case of homogeneous nucleation by the term \(f(m, \alpha) \). If the insoluble substance is completely wettable, then \(\theta = 0 \), \(m_\alpha = 1 \), \(f = 0 \), and \(\Delta F_{\delta} \) = 0. If the substrate is completely non-wettable (\(\theta = 180^\circ \), \(m = 1 \), \(f = 1 \), \(\alpha = 0 \), and \(m_\alpha = 0 \), then (2.8) transforms into the energy of homogeneous nucleation \([KS98] \) which is therefore a particular case of heterogeneous nucleation. The exact values of \(m_\alpha \) for the substance; that may constitute the SIS have not yet been accurately measured \([PK97] \), but they can be estimated by comparison with the parameter \(m_\alpha \) for water: \(\theta = 43 - 68^\circ \), \(m = 0.36 - 0.73 \) for surface soil, quartz, sand; and \(\theta = 9 - 17^\circ \), \(m = 0.95 - 99 \) for Agl (which explains its high efficiency in cloud seeding). If the crystal lattice of the insoluble substrate satisfies the condition of epitaxy, i.e., have hexagonal structure with the parameters close to ice, then \(\varepsilon \) can be \(-1.5 \) %, and if the substrate lattice is dissimilar to ice, then the germ lattice is not accommodated to it and \(\varepsilon = 0 \) \([Young, 1993; PK97] \).

We can introduce the “effective temperature” and the “effective” supercooling \(\Delta T_{\alpha} \) caused by supersaturation \(\Delta S_w \). \(\Delta T_{\alpha} \) can be defined using (2.6) from the relation \(\ln(T/T_0) = \ln([T_0/T_0] \times \Delta S_w) \). Then \(T_r = T_0 + \Delta T_{\alpha} \), \(\Delta T_{\alpha} = (1 + \Delta \varepsilon)^\alpha - (1 + \alpha) \times \Delta T_{\alpha} \), where \(\Delta T_{\alpha} = -100 \Delta S_w \), i.e., \(\Delta T_{\alpha} \) in °C is approximately equal to water supersaturation in % with the opposite sign. Table 1 shows \(G \) and \(\Delta T_{\alpha} \) for \(\Delta S_w = 0.1 \) (10%), corresponding to an effective shift in \(T \) from 10-12°C to the colder \(T_\alpha \) accelerating freezing; at saturation \(\Delta S_w = 0.1 \) (10%), the deceleration of the freezing rate. Note that according to this theory, the crystals may form at high \(\Delta \) very close to 0°C or even slightly above. This explains the success of many cloud seeding experiments at \(T \approx 0°C \).

Since \(r_e \) should be positive, we have from (2.6) the condition (\(T_r/T_0 \) \(S_w > G \) \(\exp[CE'/(\rho L_m)] \)), or a condition of minimum threshold \(S_{w,th} \) for nucleation

\[
S_{w,th} = (TT_0 \exp[CE'/(\rho L_m)])^{1/V} \tag{3.1a}
\]

which, for \(\varepsilon = 0 \), is the same as for homogeneous nucleation:

\[
S_{w,th} = (TT_0)^{1/V} \tag{3.1b}
\]

Figure 1 shows the temperature dependence of the threshold humidity (100 \(S_{w,th} \)) of heterogeneous nucleation in comparison with the homogeneous nucleation threshold. The values of \(S_{w,th} \) in Figure 1 decrease with \(T \). In contrast to the classical theory for pure water where freezing nucleation is prohibited at \(S_w < 1 \) (to the left of the vertical line \(RH = 100% \)), it is allowed by the new theory in the much wider region between this line and the threshold curves on the left down to \(RH = 0.75 - 0.85 \) at \(T = 35 \) to -50°C. Here, crystals may form from the solution droplets (haze particles) in the clear sky and survive since the humidity is higher than saturation over ice, RH>100% (line on the left). This explains the phenomenon of “diamond dust” which is often observed in the Arctic and shows that cirrus clouds may also form via heterogeneous freezing of haze at \(S_w < 1 \). This lowering of the threshold humidity for freezing mode below 100% is valid only for mixed aerosols while the threshold \(RH = 100% \) is valid for the insoluble aerosols.

Table 1. Temperature variations of \(G \), \(\Delta T_{\alpha} \), \(S_{w,th} \), \(S_{w,th} \), \(S_{w,th} \)

<table>
<thead>
<tr>
<th>(T) (°C)</th>
<th>-5</th>
<th>-10</th>
<th>-20</th>
<th>-30</th>
<th>-40</th>
<th>-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(T))</td>
<td>0.39</td>
<td>0.40</td>
<td>0.43</td>
<td>0.47</td>
<td>0.53</td>
<td>0.64</td>
</tr>
<tr>
<td>(\Delta T_{\alpha})</td>
<td>9.7</td>
<td>9.3</td>
<td>10.2</td>
<td>10.6</td>
<td>11.6</td>
<td>12.0</td>
</tr>
<tr>
<td>(S_{w,th})</td>
<td>1.08</td>
<td>1.03</td>
<td>1.02</td>
<td>1.01</td>
<td>0.96</td>
<td>0.91</td>
</tr>
<tr>
<td>(S_{w,th})</td>
<td>1.03</td>
<td>1.00</td>
<td>0.94</td>
<td>0.86</td>
<td>0.80</td>
<td>0.74</td>
</tr>
<tr>
<td>(S_{w,th})</td>
<td>1.11</td>
<td>1.07</td>
<td>1.06</td>
<td>0.94</td>
<td>0.89</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Figure 1. Temperature dependence of the threshold humidity (100 \(S_{w,th} \)) of heterogeneous nucleation, calculated with the mist strain \(\varepsilon = 2% \) (asterisks, 2.5% (circles), and \(\varepsilon = 0 \) (diamonds, same as for homogeneous nucleation). The curve RH = 100% (crosses) denotes saturation over ice.

Figure 2. Heterogeneous nucleation rates: freezing, \(R_f(S_{w,th}) \), \(R_p(S_{w,th}) \), for two saturation ratios \(S_{w,th} \) and \(S_{w,th} \), shown in Table 1, integrated according to (2.10) over the size spectrum of the aerosol with \(S_w = 200 \) cm, deposition rate, \(R_{dep}(S_{w,th}) \), and Fletcher's rate calculated with a vertical velocity of \(w = 5 \) cm s, \(m_{\alpha} = 0.5 \) for freezing mode and \(m_{\alpha} = 0.95 \) for deposition mode.
4. Conclusions

The heterogeneous nucleation theory described above explains the empirical dependencies of ice nuclei behavior on temperature and supersaturation, allows crystal formation via condensation-freezing at supersaturation over water (down to RHW=75-85%), and explains observations of high crystal concentrations (200-600 L^-1 in 300-600 s) at warm (-5 to -12°C) temperatures when the splintering mechanism is not effective. This theory can serve as an alternative to the empirical methods of ice nucleation parameterizations used now and can be recommended for cloud and climate models, in particular, for simulation of cirrus clouds and diamond dust.

However, many basic parameters and assumptions of the theory still require further measurement and verification: the temperature dependence of all thermodynamical parameters (latent heat, surface tension, free energy); values of the contact angle for many substances that may serve as IN; and the chemical composition of IN. The irregularities of the surface of solid insoluble substrate may also strongly influence the nucleation rate. Incorporation of this nucleation theory into numerical models of various complexity, especially with explicit microphysics [e.g., Khvorostyanov et al., 2000] may help to test its validity and improve it further.

Acknowledgments. This research has been supported by the Department of Energy Atmospheric Radiation Measurement Program. We would like to thank the anonymous reviewers for their very helpful comments.

References

Fletcher, N. H., Active sites and ice crystal nucleation, J. Atmos. Sci., 1266-1278, 1969.

V. Khvorostyanov, Dept. of Meteorology, University of Utah, Salt Lake City, UT 84112 (e-mail: kmk@univut.rr.com)
J. Curry, Program in Atmospheric Oceanic Sciences, Dept. of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309-0429, (e-mail: curryja@cloud.colorado.edu)

(Received: November 9, 1999, revised: August 23, 2000; accepted: August 24, 2000)